Accueil du site > Aspects expérimentaux et techniques > Bobines
Le LNCMI produit et utilise différents types de bobines.
- Bobines monolithiques jusqu’à 80T :
Bobines à conducteurs renforcés | Bobines à densité de renfort optimisée |
---|---|
13mm (77K) ; 7mm (1.5K) ; 4mm (300mK) | 13 ou 28mm (77K) ; 7 ou 20mm (1.5K) ; 4mm (300mK) ou 9mm (50mK) |
![]() |
![]() |
- Bobines multiples (gigognes) jusqu’à 98.8T :
Ces aimants comprennent deux bobines concentriques jusqu’à 90 T et trois bobines au delà.
80 T | 90 T | >90 T |
---|---|---|
(12 MJ+1 MJ) | (12 MJ +1 MJ) | (14 MJ+6 MJ+1 MJ) |
13 mm@77 K ; 7 mm@1.5 K ; 4 mm@300 mK | 8 mm@77 K ; 4 mm@1.5 K ; 4 mm@500 mK | 8 mm@77 K ; 4 mm@1.5 K |
Récapitulatif des bobines :
Energy (MJ) [number of coils] | B user (T) | Bore diameter 77K [at 1.5K] (mm) | Pulse duration [rise time ;FWHM] (ms) | Time between two pulses (hour) |
---|---|---|---|---|
1.25 [1] | 60 | 13 [7] | 150 [25 ;45] | 1.5 |
5 [4] | 60 | 28 [19] | 300 [55 ;87] | 1.25 |
6 [2] | 70 | 13 [7] | 200 [32 ;55] | 1 |
12 (Outer 34T) 1 (Inner 46T) [1] | 80 | 13 [7] | 400 [90] 40 [16] | 1.5 |
12 (Outer 34T) 1 (Inner 56T) [1] | 90 | 8 [4] | 400 [90] 40 [16] | 1.5 |
14 (Outer 11T) 6 (Middle 29T) 1 (Inner 60T) [1] | 95 | 8 [4] | 1200 [90] 70 [30] 25 [10] | 2 |
Bobines pour les générateurs mobiles (ESRF, ILL, LULI, LLNL) : (Set-up grands instruments)
200kJ Bobine à grand angle d’ouverture | 30T | 20mm ; +/- 40° d’ouverture angulaire | 60ms [4ms] | 0.125hr |
1MJ Split coil | 30T | 22mm ; ouverture dans le plan médian 22mm [0-180°] +/- 2.5° | 60ms [16ms] | 0.5hr |
1MJ Bobine à grand angle d’ouverture | 40T | 20mm ; +/- 60° d’ouverture angulaire | 100ms [50ms] | 0.08hr |
30 kJ Split coil | 40T | 6 mm ; mid-plane opening 6 mm | 320 µs [160 µs] | 0.25 hr |
30 kJ Split coil | 30T | 6 mm ; mid-plane conical opening 20° | 320 µs [160 µs] | 0.25 hr |
30 kJ Split coil | 30T | 10 mm ; mid-plane opening 10 mm | 320 µs [160 µs] | 0.25 hr |
Design and Tests of the 100 Tesla Triple Coil at LNCMI J. Béard et al. IEEE Trans. Appl. Supercond. vol. 28, no. 3, April 2018, Art. no. 4300305
A novel platform to study magnetized high-velocity collisionless shocks D.P. Higginson, Ph Korneev, J. Béard et al. High Energy Density Physics (2014)
A 31T split-pair pulsed magnet for single crystal X-ray diffraction at low temperature F. Duc et al. Rev. Sci. Instrum. 85, 053905 (2014)
Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields B. Albertazzi, J. Béard, A. Ciardi et al. Rev. Sci. Instrum. 84, 043505 (2013).
Special Coils Development at the National High Magnetic Field Laboratory in Toulouse J. Béard, J. Billette, P. Frings, et al. J. Low Temp. Phys. 170, 5-6, 442-446 (2013)
The French High Magnetic Field Facility J. Béard, F. Debray, J. Low Temp. Phys. 170, 5-6, 541-552 (2013) High-frequency magnetic oscillations of the organic metal theta-(ET)(4)ZnBr4(C6H4Cl2) in pulsed magnetic field of up to 81 T J. Béard, et al. EPJ-AP 59, 3, 30201 (2012)
Copper/Stainless Steel Polyhelix Magnets F. Lecouturier, J. Billette, J. Béard, et al. IEEE Trans. Applied Superconductivity 22, 3, 4300404 (2012)
Optimization of Large Multiple Coil Systems for Pulsed Magnets J. A. A. J. Perenboom, P. Frings, J. Béard, et al. J. Low Temp. Phys. 159, 1-2, 336-340 (2010)
New developments at the national pulsed field laboratory in Toulouse P. Frings, J. Billette, J. Béard et al. IEEE Trans. Applied Superconductivity 18, 2, 592-595 (2008)
Rapid cooling methods for pulsed magnets P. Frings, H. Witte, H. Jones et al. IEEE Trans. Applied Superconductivity 18, 2, 612-615 (2008)
Membres du groupe : Jérôme Béard, Julien Billette